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ABSTRACT

Parallel factor (PARAFAC) analysis is an extension of a low
rank decomposition to higher way arrays, usually called ten-
sors. Most of existing methods are based on an alternating
least square (ALS) algorithm that proceeds iteratively, and
minimizes a criterion (that is usually quadratic) of the t with
respect to individual factors one by one. Convergence of this
approach is known to be slow, if some of the factor contain
nearly co-linear vectors. This problem can be partly allevi-
ated by an enhanced line search (ELS) by Rajih et al. (2008).
In this paper we show that the method originally proposed by
Paatero (1997), consisting in optimization with respect to all
modes simultaneously, can be simpli ed, and can far outper-
form the ALS-ELS in ill–conditioned data in all modes.

Index Terms— Multilinear models; PARAFAC; CANDE-
COMP; Positive Matrix Factorization

1. INTRODUCTION

Three-way and higher-way data arrays need to be analyzed
in many research areas such as chemistry, astronomy, or even
psychology. Parallel factor (PARAFAC) analysis, or Canoni-
cal decomposition (CANDECOMP), is an extension of a low
rank decomposition to higher way arrays, usually called ten-
sors.

Most of existing methods of PARAFAC analysis are based
on an alternative least square (ALS) algorithm that proceeds
iteratively, and minimizes a criterion (that is usually quadratic)
of the t with respect to individual factors one by one. Some-
times, there is a requirement that all factors should have non-
negative elements, so that we speak about nonnegative matrix
or tensor factorization.

Convergence of this approach is known to be slow, if some
of the modes contain nearly co-linear vectors, where the it-
eration ends in a “convergence bottleneck”, or in “swamp”
situations or nearly “degenerate” cases, where the factors are
highly colinear in all modes [4, 5].
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A modi cation of the ALS algorithm using a technique
called Enhanced Line Search (ELS) was proposed, recently
by Rajih and co-workers [1]. The latest algorithm was shown
to help in the case of the “single mode bottleneck”, where
only one of factors contained nearly co-linear vectors. This
algorithm is not so successful in more dif cult “multiple bot-
tleneck” case, as is also shown in this paper.

An alternative approach to the PARAFAC analysis was
proposed by Paatero and co-workers in [2], called PMF3 in
the three-way arrays. It is a speci c modi cation of the damped
Gauss-Newton or Levenberg-Marquardt method [3]. Unlike
the ALS approach, in this method, all modes of the PARAFAC
decomposition are updated simultaneously. In this paper we
present a simpli ed version of the PMF3, combined with the
ELS, which helps to improve convergence of the algorithm
in some critical points. Since the method is basically Gauss-
Newton, we shall refer to it as GN/ELS. We also study per-
formance of two variants of the Levenberg-Marquardt (LM)
method.

A very comprehensive comparative study of different PA-
RAFAC algorithms can be found in [6]. However, it does not
include the ELS. The ELS is compared to other algorithms in
[1, 5], but these studies do not include PMF3 nor any of its
modi cations.

The paper is organized as follows. Section 2 presents the
ALS algorithm and the ELS. The GN/ELS algorithm is in-
troduced in Section 3. Section 4 contains simulations and
Section 5 concludes the paper.

2. ALS AND ELS

For simplicity, we restrict our presentation to three-way mod-
els, although an extension of the proposed algorithm to higher
way models is straightforward.

Assume that a three way tensor X of the dimension I ×
J × K has elements

Xijk =
F∑

f=1

AifBjfCkf (1)

where Aif , Bjf and Ckf , are elements of factor matrices A,

4114978-1-4244-4296-6/10/$25.00 ©2010 IEEE ICASSP 2010



B and C, respectively, that have dimensions I × F , J × F
and K × F , respectively. Here F is the number of factors.

Elements of X can be arranged in a I × (JK) matrix
XI×JK that is composed of K blocks of the size I × J ,

XI×JK = [X:,:,1, . . . ,X:,:,K ] . (2)

Then, XI×JK can be written as

XI×JK = A(C � B)T (3)

where � stands for the Khatri-Rao product (each column of
C � B is the Kronecker (tensor) product of corresponding
columns in C and B), and T stands for a matrix transposition.

Assume that a noisy observation of the tensor X is given,

Y = X + E (4)

where E is a tensor of the same dimension as X.
The ALS algorithm consists in a cyclic minimization of

the least square criterion

Q = ‖YI×JK − A(C � B)T ‖2
F (5)

where ‖ · ‖F stands for the Frobenius matrix norm, with re-
spect to the factors A, B and C, keeping the other factors
xed. For example, the LS estimate of A is given as

Â = YI×JK [(C � B)+]T (6)

where + stands for the Moore-Penrose pseudoinverse. For
more details on the ALS, including suitable initialization and
data pre-processing see e.g. [6].

The Enhanced Line Search (ELS) is a general optimiza-
tion technique that is applicable to any iterative algorithm,
provided that the optimization criterion is a polynomial or
a rational function. If an algorithm suggests to update θ to
θ + Δθ in one step, the ELS technique consists in nding an
optimum step size by treating the function Q(θ+νΔθ). This
function is a polynomial in parameter ν and the optimum step
size is found among stationary points of this polynomial. In
our case we assume that θ is composed of all elements of the
matrices A, B and C. It was suggested to apply this tech-
nique to enhance convergence of the ALS in [1, 5].

3. THE GAUSS-NEWTON METHOD

Paatero [2] proposed to minimize the criterion (5) simultane-
ously with respect to the elements of all three matrices A, B
and C. Basically, his method can be interpreted as a Gauss’
iterative method (e.g. [8]), a generic tool for minimization of
a quadratic form which depends on a nonlinear function of
parameters.

Let the criterion (5) be written in the form

Q = [ŷ − f(θ)]T W[ŷ − f(θ)] (7)

where ŷ stands for a vector of measured data, θ is a vector of
the parameters of the model to-be estimated, f(θ) is a nonlin-
ear function of the parameters that describes the model, and
W is a positive de nite weight matrix.

In our case, ŷ = vec[Y], θ be composed of all elements of
A, B and C (the structure will be speci ed later), and f(θ) =
vec[A(C � B)T ]. The matrix W will be the identity matrix
in our case, for simplicity of the exposition.

The Gauss’ iterative method can be written as

θ[r+1] = θ[r] + [FT
r WFr]−1FT

r W[ŷ − f(θ[r])] (8)

where r is the iteration index and Fr = ∂f(θ)/∂θ|θ=θ[r]

is the Jacobi matrix of the mapping f evaluated at the last
estimate of the parameter. Here Fr is assumed to have full
rank. In the following we shall omit the iteration index from
the notations.

Computation of the Jacobi matrix F is very simple in view
of the facts

∂Xijk

∂A�f
= δi�BjfCkf ,

∂Xijk

∂B�f
= δj�AifCkf

∂Xijk

∂C�f
= δk�AifBjf (9)

for all suitable i, j, k, � and f . Since, however, this matrix has
IJK rows, which might be a large number, we shall compute
directly the products

Ψ = FT F (10)

and
ξ = FT [ŷ − f(θ)] (11)

that have the dimension F (I + J + K)×F (I + J + K) and
F (I + J + K) × 1, respectively. Assume that θ is arranged
as

θ = [θT
1 , . . . ,θT

F ]T (12)

where
θf = [AT

:,f ,BT
:,f ,CT

:,f ]T (13)

is composed of the f−th column of A, B and C for f =
1, . . . , F . Then, the matrix Ψ can be partitioned in F × F
blocks of the size I + J + K,

Ψ =

⎡
⎢⎣

Ψ11 . . . Ψ1F

...
...

ΨF1 . . . ΨFF

⎤
⎥⎦ (14)

where the (j, i)−th block can be written as

Ψji =

⎡
⎣ βijγijII γijA:,iBT

:,j βijA:,iCT
:,j

γijB:,iAT
:,j αijγijIJ αijB:,iCT

:,j

βijC:,iAT
:,j αijC:,iBT

:,j αijβijIK

⎤
⎦ (15)

for i, j = 1, . . . , F . Next, II , IJ , IK stand for identity ma-
trices of the dimension I, J and K, respectively, and αij , βij
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and γij is the (ij)−th element of AT A, BT B, and CT C,
respectively. The vector ξ can be written as

ξ =
[
ξT

1 , . . . , ξT
F

]T

(16)

where

ξf =

⎡
⎣ YI×JK(C:,f � B:,f )

YJ×IK(C:,f � A:,f )
YK×IJ (B:,f � A:,f )

⎤
⎦ . (17)

The straightforward application of the Gauss’ iteration is not
possible, because the Jacobi matrix F is not full rank and the
matrix Ψ is not invertible. It is a consequence of the scale
uncertainty of the multilinear tting problem. In short, any
increase of the scale in one factor can be compensated by a
proportional decrease of the scale of the corresponding fac-
tor in a different mode. In the original PMF3 algorithm this
problem is solved by augmenting the criterion Q in (5) by
an arti cial term involving Frobenius norms of the individual
factors. The modi ed criterion is

Q̃ = Q + μ‖θ‖2 = Q + μ(‖A‖2
F + ‖B‖2

F + ‖C‖2
F ) (18)

where μ is a small positive correction parameter. The arti cial
term makes the optimization task well de ned and removes
the scale ambiguity. It is equivalent to introducing a scale
constraint on the factors. In practice, adding the correction
term is equivalent to adding μII+J+K to Ψ, just like in the
LM method [3]. Note that in the original PMF3 algorithm,
there was another optional additional term in the criterion that
enables to impose a nonnegativity constraint on the factors A,
B and C. The constraint is ignored in this study.

3.1. Solving the ambiguity problem

In this paper we propose a new solution of the scale ambigu-
ity. The solution leads in reduced dimension of the optimiza-
tion term instead of introducing the scale constraint. There-
fore it is computationally simpler and numerically more sta-
ble.

In short, we propose to exclude one element from the min-
imization in each factor and in each mode (except one mode).
In total, it is necessary to exclude 2F elements of the parame-
ter vector θ from the minimization. In each factor of each but
one mode we exclude the element that has the largest magni-
tude from the optimization. The excluded elements may have
indices

i
(a)
f = argmaxi|Ai,f | and i

(b)
f = argmaxi|Bi,f | .

These elements are kept unchanged in the Gauss’ iteration,
while corresponding columns and rows in the matrix Ψ are
deleted together with corresponding elements of the vector ξ.

The proposed way of selection of the parameters to be ex-
cluded from the minimization reduces the probability that the
true value of the excluded parameter is zero. (If it were zero,

the optimization could never nd the correct solution.) Also,
this selection of the excluded parameters has the consequence
that remaining parameter converge more quickly.

3.2. Implementation details

It might happen that the matrix Ψ with reduced number of
rows and columns, as described in the previous subsection,
is not enough well conditioned, or for this or of some other

reason, the parameter increment Δθ
�
= Ψ−1ξ does not lead

to a better (lower) value of the target criterion Q. One pos-
sible way of achieving monotone convergence is to replace
problematic steps of the GN algorithm by the outcome of the
ELS algorithm at the direction produced by the GN. This is
the principle of the proposed algorithm GN/ELS. Since the
criterion Q is bounded not to increase, convergence of the re-
sultant algorithm (at least a local one) is guaranteed.

Similarly, in the LM algorithm, where the iteration is Δθ
�
=

(Ψ+μI)−1ξ for a suitable choice of μ [3], the convergence is
guaranteed as well. In this paper we study two variants of the
LM algorithm: without and with the dimensionality reduction
described in the previous subsection. They are denoted LM-1
and LM-2, respectively.

Initialization of the algorithms (GN/ELS, LM-1,2) should
not be quite arbitrary in order to achieve a quick convergence.
We found useful to initialize the algorithms by outcome of
one iteration of the ALS algorithm (which also should be ini-
tialized with some care [6]).

As one can expect, the optimization task may have several
local minima, like the ALS algorithm. Neither these algo-
rithm guarantee that they have converged to the truly deepest
minimum. As in the case of the ALS algorithm, it is recom-
mended to let it run from several different starting points.

Matlab code of our implementation of the algorithms has
been posted on the Internet[9].

4. SIMULATIONS

In this section we test the proposed algorithm on two nontriv-
ial data sets. We skip the case of a single bottleneck, which
means that the factors in one mode are collinear, which can
be solved relatively easily, e.g. by the ALS-ELS technique.
For lack of space, we present examples with double and triple
bottleneck. In all cases we have considered three-way arrays
of the size 12 × 11 × 10 of the rank 5.

The factors were generated as independent Gaussian dis-
tributed with zero mean and unit variance of the selected size
12×5, 11×5 and 10×5. Then the rst two or all three modes
were modi ed to contain nearly collinear vectors, as follows:
Its second and third columns A:,2 and A:,3 were replaced by
A:,1 + 0.1A:,2 and A:,1 + 0.1A:,3. Thus, the rst three fac-
tors become nearly colinear, having the mutual angle about
0.1 ∗ 180/π ≈ 6o. Similarly, colinearity can be achieved in
the other two modes.
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Fig. 1. Convergence in the double bottleneck case.
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Fig. 2. Convergence in the triple bottleneck case (a swamp).

The tensor X was constructed from the factors above, and
nally a noisy observation Y was obtained by adding an ad-

ditive noise that was independently generated for each en-
try and had the variance 10−6‖X‖2

F /(IJK). Examples of
convergence of the ALS estimator, ALS/ELS, LM-1, LM-2
and of GN/ELS is shown in Figure 1-2. In the example with
the triple bottleneck, convergence of ALS and ALS/ELS was
not observed at all. Computational time of one iteration of
ALS/ELS, LM-1, LM-2 and GN/ELS was, respectively, about
2.8, 4.2, 4.3 and 4.9 times longer than one iteration of ALS.

Since the convergence patterns have changed simulation
to simulation, we studied the relative frequency of trials, where
the algorithm converges in 200 iteration steps to the lowest
value of the target criterion (plus 2% tolerance) among the
ve algorithms. We have conducted 1000 independent tri-

als in each scenario. In the former scenario, ALS has never
converged to the lowest achievable value, ALS/ELS in 25.4%
trials, and LM-1, LM-2 and GN/ELS in 98.4%, 99.1% and
in 78.8% trials, respectively. In the latter scenario, ALS and
ALS/ELS have never converged (in the 200 iterations), and
LM-1, LM-2 and GN/ELS in 79.5%, 80.1% and in 80.6%
trials, respectively. We note that LM-1, LM-2 and GN/ELS
greatly outperform ALS and ALS/ELS. LM-2 has a slightly

better convergence than LM-1 thanks to the dimensionality
reduction. GN/ELS seem to converge faster than LM-2, but
in average it has slightly higher probability of being stopped
at a false local minimum of the target criterion than the two
other algorithms.

5. CONCLUSIONS

The tensor factorization algorithms that optimize all modes of
a tensor simultaneously were shown to perform much better
than the popular ALS or more advanced ALS/ELS methods
in dif cult scenarios.The overall winner of the comparison of
the algorithms was the Levenberg-Marquardt method with the
reduced dimension of the optimization (section 3.1).

We believe that the idea of linearization of the multilin-
ear t in a neighborhood of the latest estimate of the tensor
decomposition can serve as a possible tool useful for other
similar tasks such as a positive tensor factorization, symmet-
ric tensor factorization, and a robust tensor factorization [10].
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